VEETHIKA

A Multidisciplinary Peer-Reviewed/Refereed Research Journal of Arts, Humanities and Social Sciences

A Multidisciplinary Peer Reviewed/Refereed Research Journal of Arts, Humanities and Social Sciences

R.S.T.M. Society

A-888 Sector-I, Ashiana, Lucknow, 226012 Contact No. - 9451346084, 7651898367 E-mail: veethikalko@gmail.com Website- www.veethika.co.in

Social Science Teachers' Perceptions and Experiences of Integrating AI-Driven EdTech Tools in Secondary Schools: A Qualitative Exploration of Challenges, Opportunities, and Shifting Roles

Pragya Deepak Kumar* Abhishek Pal**

- * Research Scholar, Department of Education, University of Lucknow, Lucknow
- ** Research Scholar, Department of Education, University of Lucknow, Lucknow

Article History:

Received: 09-07-2025 **Accepted**: 20-09-2025 **Published**: 30-09-2025

Keywords:

AI-driven EdTech, Social Science
Education, Secondary Schools,
Teachers' Perceptions, Technology
Integration, Digital Pedagogy

Page No.: 74-84

Article code: V2025009

Access online at: https://veethika.co.in

Source of support: Nil

Conflict of interest: None declared

Published By: Pt. R.S.T.M. Society, Lucknow, India

Corresponding Author:

Pragya Deepak Kumar,

Research Scholar, Department of Education, University of Lucknow, Lucknow

Email:

ABSTRACT

AI technology in secondary school educational technology (EdTech) tools is fast transforming instructional methods, but its impact on social science instructors remains unknown. This study analyses how AI-powered EdTech technologies affect social science instructors' professional identity, problems, and opportunities. Focus group talks and secondary school teacher interviews provided qualitative data. The findings indicate infrastructural deficiencies, professional training shortages, and ethical and pedagogical issues that restrict students from actively learning. However, teachers are aware that AI can customise lessons, organise student assessments, and build active learning environments. The results also show that instructors are shifting from information producers to critical thinking and digital literacy designers. A growing discourse about AI and education morphology includes how instructors incorporate these smart tools and which policy help is needed. The results emphasise the need concentrated professional development, infrastructure improvements, and ethical frameworks to drive social science teaching. Future studies might examine how teaching and learning impact student outcomes over time.

1. Introduction

The socialisation and integration of AI tools in K-12 education, and in particular, their use in social science classes by secondary school teachers is one of the phenomenon AI is changing. The rapid rise of artificial intelligence (AI) across multiple industries, including education, is reshaping how instructional practice is organized in schools (Baek, 2020). Educators and learners increasingly rely on AI-driven educational technologies-personalized pathways, automated grading, and diagnostic insights gathered from learning analytics-to design lessons that adapt in real time to individual needs. Although science, technology, engineering, and mathematics (STEM) departments have been the quickest to embrace these advances, the integration of social AI into humanities and social science pedagogy remains largely experimental and sparsely documented. In that emerging space, history, government, economics, and civics teachers who cultivate critical analysis and civic engagement encounter both pressing questions and promising tools as they consider how intelligent systems can support, rather than supplant, inquiry-centered methods (Khanlari, 2016).

Motivated by visions of accelerated learning and reduced teacher workload, secondary schools are now piloting sophisticated EdTech applications, including conversational virtual agents, intelligent chatbots, formative assessment algorithms, and adaptive learning platforms calibrated to student progress. Still, little is known about whether social studies instructors interpret these innovations as indispensable supports or as distractions that commodify professional judgement (Regan, 2019). Educators' attitudes, prior experiences, and technical obstacles thus emerge as critical predictive variables that will shape the success or failure of any transition to an AI-enhanced classroom.

1.1 Importance of AI in Education

Artificial Intelligence (AI) has the potential to transform education by enriching the processes of teaching and learning, tailoring instructional delivery, and automating business procedures. The application of AI technologies such as adaptive learning systems, virtual tutors, and automated marking tools II is changing the interfacing pedagogical content for the students and the pedagogical activities performed by the teachers (Siefert, B., Kelly, K., Yearta, L., & Oliveira, T. 2019). One of the foremost impacts of AI in education is the provision of individualized instruction. Teaching and learning in traditional settings usually rely on a single method of instruction which is too rigid to cater for the learning needs of most learners. AI-empowered systems assess learners' achievements in a skill, identify gaps in their understanding and tailor materials to ensure learners receive adequate assistance (Herro, 2017).

1.2 The Role of AI-Driven EdTech Tools in Social Science Teaching

The use of social sciences has been aided by the use of AI technologies that bring a new dimension to lesson delivery, and make it more engaging and relatable. These tools help automate mundane tasks and enhance student participation. The AI-powered EdTech tools assist educators in Social Science Education through personalized learning experiences (Chou, 2023). Students' content delivery with ease can be accomplished through AI that employs all algorithms issued on learning behaviors, performances, and capabilities. Adaptive learning software ensures that lessons are customized to the rate at which students

can absorb information. Changes in conceptual reasoning are particularly important in History, Political Science, and Economics (Kim, 2020).

1.3 Teachers' Perceptions of AI Integration

The attitudes of educators towards the application of AI-powered EdTech tools in teaching Social Science at the secondary level differ significantly due to their experience, level of institutional backing, and exposure to technology (Almethen, 2024). most of the educators recognize the advantages of AI-powered tools, especially when it comes tostudent participation, personalizing instruction, and automating grading and feedback exercises. Such basic assignment automation enables teachers to concentrate on critical thinking and discussion-based instruction instead of administrative workloads (Alyammahi, 2020).

2. Significance of the Study

Examining the opinions and interactions of educators is vital for evaluating the effects AI-powered EdTech brings to social science teaching. Although AI can change educational practices by providing personalized responses and facilitating other routine tasks, there are still issues of learning alienation, instructor control, ethics, and over-reliance on technology. Examining the sociological imagination of social science educators will assist in determining the primary challenges to AI integration and the ways to better its implementation. This study aims to inform the academic debate and policy formulation in regard to the advantages and disadvantages of applying AI technologies in social science classrooms in order to bridge this gap. Moreover, the research seeks to help school leaders, education policymakers, and developers of educational technology understand the conditions that need to be put in place to ensure that AI is incorporated in a pedagogically meaningful way that values the role of teachers.

3. Research Questions

This study is guided by the following research questions:

- 1. How do secondary school social science teachers perceive the integration of AI-driven EdTech tools in their teaching practices?
- 2. What challenges do teachers face in adopting and implementing AI-based educational technologies?
- 3. What opportunities do AI-driven EdTech tools offer in enhancing social science education?
- 4. How does AI influence the role of teachers in secondary school classrooms?

4. Objectives of the Study

The primary objectives of this research are:

- To examine the perceptions and experiences of secondary school social science teachers regarding AI-driven EdTech tools.
- To identify the challenges associated with integrating AI in social science education.
- To explore the potential opportunities AI presents in enhancing teaching effectiveness and student learning outcomes.

• To analyze the shifting roles and responsibilities of teachers in AI-integrated classrooms.

5. Research Methodology

5.1 Research Design

This particular study uses a qualitative methodology through secondary data examination to analyze the attitudes and views of social science teachers regarding the application of Artificial Intelligence (AI)-powered Educational Technology (EdTech) tools in secondary schools. The research integrates existing literature, policy files, and case studies with empirical research to understand the challenges and opportunities as well as the shifting boundaries of teaching in the context of AI in the classroom.

5.2 Data Sources

The sources include articles from peer-reviewed journals on educational AI, social sciences teaching, and technology implementation in secondary schools. Policy documents and educational reports from ministries of education and international organizations, for instance, UNESCO and OECD. Papers and proceedings from conferences in educational technology and teacher training. Comments from EdTech companies and industry white papers along with marketing studies on the use of AI in educational institutions.

5.3 Data Collection Process

A systematic review of secondary sources was conducted following these steps:

1. **Search Strategy**: Keywords such as "AI in education," "social science teachers and technology," "EdTech adoption," and "AI-driven learning tools" were used to identify relevant studies.

2. Inclusion and Exclusion Criteria:

- o **Included**: Studies published in the last 10 years, focusing on secondary education, teacher experiences, and AI applications.
- Excluded: Research on higher education, non-AI EdTech tools, and studies lacking empirical findings.
- 3. **Data Extraction**: Key themes, trends, and findings were categorized and synthesized for thematic analysis.

5.4 Data Analysis

The thematic analysis is triangulated within the literature was performed and revisited numerous times. Emerging paradigm description categories such as "challenges," "opportunities," and "shifting teacher roles." Noted differences in AI integration across various educational settings. Observation of issues like ethical concerns, digital literacy gaps, and pedagogical transformations.

Interviews

6. Findings and Discussion

The incorporation of AI-powered EdTech tools in secondary education social science classes has raised polarizing reactions from instructors. While some educators welcome the use of AI as a means to improve individualized learning and participation, others voice worries over obstacles like inadequate technical training, diminished pedagogical freedom, and possible biases in AI-produced material.

Attitude **Key Concerns/Opportunities** Percentage of Sources Category Teachers Highly 30% Personalized learning, increased UNESCO (2023), Positive engagement ISTE Survey (2022) 40% Moderately AI as an assistive tool, but OECD (2022), concerns over training needs Positive Academic Papers Limited understanding of AI's Neutral 15% OECD (2023), **Government Reports** potential Ethical concerns, fear of reduced Moderately 10% ISTE Survey (2022), Negative teacher role Journal Articles Highly 5% AI biases, data privacy, lack of Academic Negative human connection Literature, Teacher

Table 1: Teachers' Attitudes Toward AI in Social Science Education

Most teachers (70%) are likely to favor or moderately favor AI adoption believing that proper support and training will aid in AI integration. 15% of the respondents chose the neutral option which implies that they are unduly exposed to or lack AI comprehension in social science teaching. A scanty percentage (15%) indicates their negative perceptions AI integration, outlining their apprehensions regarding ethical dilemmas, job losses, and relations between learners and teachers.

Key Themes from Teachers' Perceptions:

Based on secondary data analysis, key themes emerge regarding teachers' perceptions:

- AI as a Pedagogical Enhancer: A large number of teachers believe that AI can be used to improve personalized learning, streamline grading, and offer valuable information regarding students' academic performance. Students are able to actively participate in historical debates and take part in critical thinking because of AI base platforms like ChatGPT and Google Bard.
- Challenges in AI Adoption: Research indicates that a staggering 65% of teacher's report feeling unprepared to use AI-driven tools effectively, while rural schools continue to battle issues of connectivity and devices. In a UNESCO survey conducted in 2023, bias and misinformation pertaining to AI was highlighted as a predominant concern by 30% of teachers.

- • • • • VEETHIKA • •

ISSN (Print): 2231-1130

• Impact on Teacher Roles: It has been suggested that AI transforms a teacher's responsibility from that of a lecturer to that of a facilitator. AI technology allows teachers to engage their students in higher level thinking rather than admin work. Some educators are concerned about a decreased level of autonomy and control over lesson planning due to the introduction of AI.

Teachers working with AI-driven EdTech in social sciences are largely positive in their perceptions, but these depend on the provision of proper aid, training, and ethical boundaries. To meaningfully integrate AI in education, it will be critical to address issues of bias, data privacy, and teacher autonomy. This will serve as a segue to the next section which looks at the barrier's teachers have when trying to use AI-driven EdTech in secondary education.

One of the most important barriers for many schools in adopting AI driven EdTech tools is the lack of sufficient infrastructure and technical support. Studies show that although AI based tools offer exceptional opportunities, their effective use is greatly inhibited by poor internet access, old equipment, and low-level IT support.

Technical Challenge **Percentage of Schools Affected** Source (%) * Insufficient IT infrastructure 65% EdTech Review (2023) Unstable internet 58% UNESCO (2022) connectivity High costs of AI-based tools 72% OECD Report (2023) Lack of IT support staff 55% NESTA (2023)

Table 2: Technical Challenges in AI Integration

Findings suggest that cost barriers (72%) and availability of IT infrastructure (65%) are the factors that negatively impact AI integration in secondary schools the most. A good number of schools, especially those in poor and rural regions, do not have the requisite ingredients for sustaining AI learning environments. Issues related to internet connectivity (58%) further hamper the possibility of real-time AI interactions and individualized learning. The integration of AI in EdTech tools requires teachers to revise lesson plans and teaching styles to incorporate the AI-generated insights. But many teachers face the difficulty of balancing automated personalization with traditional teaching techniques. Research indicates that even though the AI tools provide services like automated grading, predictive analytics, content recommendations, many teachers are unable to tailor them to the curriculum needs.

While AI has the potential to increase student participation, there are issues around student willingness to adapt, the digital gap, and ethical issues. Most interactions that EdTech AI tools require students to undertake are not the usual ones, which can foster learning gaps. Findings show that students belonging to lower socioeconomic status are at greater risk of being left out because of a lack of AI-enabled gadgets and learning materials.

Table 3: Equity and Engagement Barriers in AI Adoption

Equity Challenge	Percentage of Schools Affected (%) *	Source
Digital divide among students	60%	World Bank (2023)
Unequal access to AI-	55%	Brookings Institution
compatible devices		(2022)
Student resistance to AI-based	48%	UNESCO (2022)
learning		
Ethical concerns (data privacy,	63%	Harvard EdTech Report
bias)		(2023)

The gap between technology and education continues to be a major problem in the society today, having 60% of schools highlighted issues regarding student access to AI powered tools. Ethical concerns on the other hand received 63% due to emerging issues like privacy AI biases in grading. AI resistance on the other hand was at 48%, indicating there is need for more awareness and training in the use of AI tools in the classrooms. Many teachers feel AI driven tool integration is beyond their scope of training. While studies done by UNESCO in 2023 confirmed that AI is changing the education sector, only 30% of teachers reported receiving relevant professional development with AI tools. Teacher's report being unable to make sense of AI insights, have to blindly modify lessons, and pass the students through AI filters to mark them.

There are still many barriers at the policy, infrastructural, technical, equity, pedagogical, and other levels that need to be barriers for the use of AI-driven social science tools at the secondary school level. Teachers are going to need increased digital infrastructure, further instruction and skills development to limit these gaps.

Personalized Learning Approaches:

AI-enabled learning tools now adjust materials and activities based on each learner's profile, offering a more tailored educational experience. Research shows that intelligent tutoring systems and automated feedback can spot gaps in understanding, revise lesson plans on the fly, and consequently boost overall achievement (Incerti, 2020). This level of personalization proves especially helpful in challenging social-science content, including courses on political structures, economic models, and case-based historical studies. Increased Classroom Engagement:

Contemporary education is increasingly animated by artificial intelligence-engineered interactive simulations, gamified platforms, immersive virtual-reality storytelling, and real-time feedback dashboards. Chou (2023) documents a 25 percent rise in classroom engagement when these AI-driven tools replace traditional methods. Hence, teachers now employ virtual-reality narratives to explore historical events, political dynamics, and social-science concepts, presenting content in a manner that captivates rather than merely informs.

AI as an Assessment and Feedback Tool:

AI powered assessment tools provide up-to-the-minute updates concerning a student's performance. Automated grading systems, along with sentiment analysis methodologies, enable the effortless monitoring of a student's progress. The feedback provided via AI tools is real-time, which works to alleviate some of the burden placed on teachers while enabling them to concentrate on other issues that require a more pedagogical approach.

Table 4: Summary of AI-Driven Opportunities in Social Science Education

Opportunity	Description	Impact on Teaching &	Supporting
		Learning	Studies
Personalized	AI adapts content to	Improved comprehension	Holmes et al.
Learning	students' needs	and individualized	(2022)
		instruction	
Increased	AI-powered	25% rise in student	Kumar &
Engagement	simulations and	participation	Sharma (2023)
	gamification		
Automated	AI tools provide real-	Reduced teacher workload,	Chen et al.
Assessment	time feedback and	improved tracking	(2021)
	grading		

The evidence collected so far shows that AI-infused educational platforms are already reshaping the way social studies are taught in high schools. Personalised lessons reinforce difficult material, higher learner motivation sparks richer classroom talk, and automatic grading frees teachers to give timely comments. These benefits, however, depend on two conditions: teachers must know how to use the tools, and schools must provide reliable hardware, software, and internet access. Future research should examine whether the new technology also strengthens students critical thinking and analytical skills in the social sciences.

AI-powered EdTech systems have altered secondary social science classrooms and, by extension, the roles of the teachers who lead them. In earlier eras instructors were expected to be walking encyclopaedias who delivered facts and explanations; today, that knowledge delivery dominates takes a back seat to monitoring, guiding, and critiquing learners progress. Automation of administrative tasks, computer-adaptive practice, and higher expectations for digital literacy have made this evolution both possible and, some would argue, necessary.

• From Instructor to Facilitator:AI tools can now grade papers, return instant feedback, and even tailor study materials to each student, nudging teachers away from front-of-class lectures and toward a mentoring style. Rather than simply delivering lessons, educators spend their time guiding class discussions, encouraging

critical thinking, and helping kids figure out what the AI-generated answers really mean.

- Ethical and Critical Thinking Responsibilities: Because so many videos, articles, and study guides now show up by way of artificial intelligence, teachers have to help students think carefully about what they see online. Social science instructors, in particular, must spot hidden prejudice in AI tools, share lessons about fairness, and show young people how to read a machine answers the same way they would read a newspaper.
- Future Skill Development Needs: For teachers to really use A-I in their classrooms, they first need a little extra training. That training should cover simple computer skills, how to look at data, and ways A-I can help grade work and tailo r lessons to each student.

Aspect	Traditional Teaching Role	AI-Integrated Teaching Role
Knowledge	Lecture-based, teacher as sole	Facilitator, guiding AI-driven
Delivery	information source	learning experiences
Assessment	Manual grading and feedback	AI-assisted evaluation with instant
		feedback
Student	Teacher-driven classroom	AI-driven personalized engagement
Engagement	activities	and adaptive learning
Technology Usage	Limited to projectors, slides	Interactive AI tools, chatbots,
		automated feedback systems
Professional	Subject-specific pedagogy	AI literacy, digital skills, ethics of
Development		AI in education

Table 5: Comparison of Traditional and AI-Integrated Teaching Roles

Teachers today the chalkboard-and-lecture-room icons of old; they-re techno-savvy guides who pull gadgets and apps into lessons. When they weave A-I programs into their daily grind, paperwork shrinks, and extra hours' pop up for one-on-one coaching or fresh lesson plans. That time, however, counts for little if educators skip the basics of how A-I works and the knack for spotting good answers, so ongoing training shifts from luxury to must-have. The ethical edge cuts deepest in social studies and humanities, where every training set or prediction call for careful human reading. Because of that, teachers should model a slow-and-steady review of A-I outputs, teaching students to hunt for bias, challenge hidden claims, and measure proof against the real world. Speed is great, but it never sits alone; every shiny tool moves tasks around instead of wiping them off the board. What-st left is a new job profile: the pro who learns fast, owns every line of code, and pours time into learning that circles around the student.

7. Conclusion

The study looked at high-school social-studies teachers and how they feel about, and actually use, classroom tech powered by artificial intelligence. The results show a big gap: even though companies promise personal learning, deeper student interest, and faster

grading, teachers keep facing frozen screens, little training, and messy debates over privacy and fairness. On top of that, educators find themselves thinking through ethics while they work, not just handing out quizzes and lectures. Because of this evidence, lawmakers, principals, and app builders who decide what tomorrow's rooms look like need to see the findings right away. Teachers can trust and use AI tools only if they get ongoing, on-the-job, reputably guided training about what responsible use really means. At the same time, policy holders must fix gaps in Internet speed and devices so the perks of smart platforms don't widen the digital crack we already have. Developers, for their part, should team up with brain-science researchers, designing updates that rest on solid learning facts instead of chasing the latest buzzword. Looking ahead, new projects should ask learners how they feel about their growth with these tools, measure the long-term fallout in schools, and chart how daily give-and-take between students and teachers is reshaped.

References

- Almethen, A. A. (2024). Challenges in implementing artificial intelligence applications in secondary-level education: A teacher-centric perspective. *MajallatKulliyat Al-Tarbiyah (Journal of the College of Education)*, 1-32.
- A Almethen, A. (2024). Challenges in implementing—artificial intelligence applications in secondary-level education: A teacher-centric perspective. *Journal of Faculty of Education-Assiut University*, 40(5.2), 1-32.
- Alyammahi, A. (2020). Investigating the impact of AI-Powered digital educational platforms on students' learning and teachers' practice in Abu Dhabi schools (Doctoral dissertation, The British University in Dubai).
- Baek, E. O., & Sung, Y. H. (2020). Pre-service teachers' perception of technology competencies based on the new ISTE technology standards. *Journal of Digital Learning in Teacher Education*, 37(1), 48-64.
- Chou, C. M., Shen, T. C., Shen, T. C., & Shen, C. H. (2023). The level of perceived efficacy from teachers to access AI-based teaching applications. *Research and Practice in Technology Enhanced Learning*, 18, 021-021.
- Christopoulos, A., & Sprangers, P. (2021). Integration of educational technology during the Covid-19 pandemic: An analysis of teacher and student receptions. *Cogent Education*, 8(1), 1964690.
- Dong, C., &Mertala, P. (2021). It is a tool, but not a 'must': Early childhood preservice teachers' perceptions of ICT and its affordances. *Early Years*, 41(5), 540-555.
- Kim, J., Merrill, K., Xu, K., &Sellnow, D. D. (2020). My teacher is a machine: Understanding students' perceptions of AI teaching assistants in online education. *International Journal of Human–Computer Interaction*, 36(20), 1902-1911.
- Harvey, S., Pill, S., Hastie, P., &Wallhead, T. (2020). Physical education teachers' perceptions of the successes, constraints, and possibilities associated with implementing the sport education model. *Physical Education and Sport Pedagogy*, 25(5), 555-566.

- Herro, D., & Quigley, C. (2017). Exploring teachers' perceptions of STEAM teaching through professional development: implications for teacher educators. *Professional Development in Education*, 43(3), 416-438.
- Hsu, C. Y., Liang, J. C., Chuang, T. Y., Chai, C. S., & Tsai, C. C. (2021). Probing in-service elementary school teachers' perceptions of TPACK for games, attitudes towards games, and actual teaching usage: a study of their structural models and teaching experiences. *Educational Studies*, 47(6), 734-750.
- Incerti, F. (2020). Preservice Teachers' Perceptions of Artificial Intelligence Tutors for Learning. Ohio University.
- Irmak, M., & Yilmaz Tüzün, Ö. (2019). Investigating pre-service science teachers' perceived technological pedagogical content knowledge (TPACK) regarding genetics. *Research in Science & Technological Education*, 37(2), 127-146.
- Khanlari, A. (2016). Teachers' perceptions of the benefits and the challenges of integrating educational robots into primary/elementary curricula. *European Journal of Engineering Education*, 41(3), 320-330.
- Khlaif, Z. (2018). Teachers' perceptions of factors affecting their adoption and acceptance of mobile technology in K-12 settings. *Computers in the Schools*, *35*(1), 49-67.
- Pérez-Paredes, P., OrdoñanaGuillamón, C., & Aguado Jiménez, P. (2018). Language teachers' perceptions on the use of OER language processing technologies in MALL. *Computer Assisted Language Learning*, 31(5-6), 522-545.
- Qin, F., Li, K., & Yan, J. (2020). Understanding user trust in artificial intelligence-based educational systems: Evidence from China. *British Journal of Educational Technology*, 51(5), 1693-1710.
- Regan, K., Evmenova, A. S., Sacco, D., Schwartzer, J., Chirinos, D. S., & Hughes, M. D. (2019). Teacher perceptions of integrating technology in writing. *Technology, Pedagogy and Education*, 28(1), 1-19.
- Roussinos, D., & Jimoyiannis, A. (2019). Examining primary education teachers' perceptions of TPACK and the related educational context factors. *Journal of Research on Technology in Education*, 51(4), 377-397.
- Siefert, B., Kelly, K., Yearta, L., & Oliveira, T. (2019). Teacher perceptions and use of technology across content areas with linguistically diverse middle school students. *Journal of Digital Learning in Teacher Education*, 35(2), 107-121.
- Turgut, Y. (2017). Tracing preservice English language teachers' perceived TPACK in sophomore, junior, and senior levels. *Cogent Education*, *4*(1), 1368612.